Derandomizing Random
Deterministic Walks

Kent Quanrud

October 29, 2020

Recall: (s, t)-connectivity in $O(\log n)$ space

- Octomobits • G = (V, E) undirected, $s, t \in V$: are s and t connected?
- only allowed $O(\log n)$ space need
- ullet previously: random walk for O(mn) steps from s

k= 5/0g(n) => 1/xx-J1/5 /4

1xx(v)-d(v) < 1/xx-J1 < h4

From the homework:

- random walk sast stationary • If G has constant spectral gap, then diameter is $O(\log n)$.
- If G has constant spectral gap, then deterministic (s,t)-connectivity.

stationary = $\chi_{k} \in \Delta' = dist. oster$ k steps 11xx-J11 = ==

Recall: (s, t)-connectivity in $O(\log n)$ space

- G = (V, E) undirected, $s, t \in V$: are s and t connected?
- only allowed $O(\log n)$ space
- previously: random walk for O(mn) steps from s

From the homework:

- If G has constant spectral gap, then diameter is $O(\log n)$. (why?)
- If G has constant spectral gap, then determinstic (s,t)-connectivity. (why?)

Theorem 1. There is a $O(\log n)$ space, polynomial time deterministic algorithm for (s,t)-connectivity in undirected graphs with n vertices.

• Omer Reingold. "Undirected connectivity in log-space". In: *J. ACM* 55.4 (2008), 17:1–17:24. Preliminary version in STOC, 2005.

expander = undirected
constant degree
view

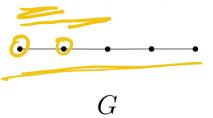
constant spectral
gap

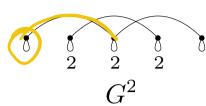
1 High level overview

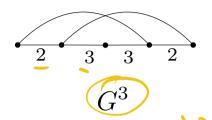
- Connectivity easy on expanders
- Key idea: implicitly convert graph to an expander
- Simplifying assumption: input graph G is regular with constant degree dSpecifical gap \geq (doable with some prepreocessing)
- build up expander with two graph operations:
 - 1. powering —
 - 2. zig-zag product \leftarrow

Powering

Goal: improve spectral gap







- G^k = multi-graph generated by all k-step walks in G
- $=(V, E=P^{k})$
- \bullet (u, v) has multiplicity equal to # k-step walks from u to v

Lemma.

- 1. G^k has n vertices
- 2. G^k is regular with degree \underline{d}^k .
- 3. If random walk on G has spectral gap γ , then random walk on G^k has spectral gap $1 (1 \gamma)^k$.

regular

Zig-Zag Product 1.0.1

decrease degree Goal:

- G = (V, E) regular graph w/ n vertices and degre d
- \bullet $H = (V_0, E_0)$ regular graph w/ d vertices and degree $d_0 = \bigcirc \bigcirc$
- identify $V_0 = [d]$

• vertices in $H \leftrightarrow \text{steps in } G$

Zig-Zag product $\mathcal{Z}(G | H)$

vertex set $V \times [d]$ Vertices

 (k_1, k_2) th neighbor of $(v_1, i_1) \in V \times [d]$: Edges:

$$\begin{pmatrix} v_1 \\ i_1 \end{pmatrix} \xrightarrow{1} \begin{pmatrix} v_1 \\ i_2 \end{pmatrix} \xrightarrow{2} \begin{pmatrix} v_2 \\ i_2 \end{pmatrix} \xrightarrow{3} \begin{pmatrix} v_2 \\ i_3 \end{pmatrix} \xrightarrow{4} \begin{pmatrix} v_2 \\ i_4 \end{pmatrix}$$

- 1. step in H from i_1 to its k_1 th neighbor, i_2 .
- 2. moves v_1 to its i_2 th neighborm, v_2 .
- 3. move from i_2 to i_3 if v_1 is the i_3 th neighbor of v_2 .
- 4. moves i_3 to its k_2 th neighbor in H.

(google images)

Notes:

- steps 2, 3 have 0 degrees of freedom
- v_1 adjacent to v_2 in G
- i_1 not (necessarily) adjaceny to i_2 in H?!
- (i), (j) • s, t connected in G only if ...
- (s,i),(t,j) connected in G only if ...

Lemma 2. Let

• G = (V, E) regular undirected graph w/n vertices and degree d• H regular undirected graph w/d vertices and degree d_0

Then $\mathcal{Z}(G \mid H)$ has:

7 · nd vertices,

httle ligger

YE [0,1]

 $egree d_0^2$

 $\int_{-\infty}^{\bullet} \frac{spectral\ gap\ \gamma_G \gamma_H^2}{spectral\ gap\ \gamma_G \gamma_H^2} \longleftarrow down$

 $76-7674 V_{H} = \frac{3}{4} V_{H}^{2} = \frac{0}{16}$

Lemma 1. Power

- 1. G^k has n vertices
- 2. G^k is regular with degree d^k .
- 3. If random walk on G has spectral gap γ , then random walk on G^k has spectral gap $1-(1-\gamma)^k$.

Lemma 2. Let

- ullet G=(V,E) regular undirected graph w/ n vertices and degree d
- ullet H regular undirected graph w/ d vertices and degree d_0

Then $\mathcal{Z}(G \mid H)$ has:

- nd vertices,
- degree d_0^2 \leftarrow
- spectral gap $\gamma_G \gamma_H^2$.

1.1 Completing the proof

Lemma 3. Let G be a regular undirected graph with n vertices, degree d^2 , and spectral gap γ_G . Let H be a regular undirected graph with d^4 vertices, degree d, and spectral gap H. Then $\mathcal{Z}(G^2 \mid H)$ is a regular undirected graph with d^4n vertices, degree d^2 , and spectral gap $(1 - (1 - \gamma_G)^2)\gamma_H^2$.

Lemma 4. Let G be a regular undirected graph with n vertices, degree d^2 , and spectral gap, γ_G . Let H be a regular undirected graph with d^4 vertices, degree d, and spectral gap H. Then $\mathcal{Z}(G^2 | H)$ is a regular undirected graph with d^4n vertices, degree d^2 , and spectral gap $(1 - (1 - \gamma_G)^2)\gamma_H^2$.

T 23/4

Deterministic connectivity

Input ks, tev

- 1. G regular with n vertices, constant degree d^2 , spectral gap $\geq 1/\operatorname{poly}(n)$
- 2. H with d^4 vertices, degree $d \ge 3/4$

$$G_{0} = G$$

$$G_{1} = \mathcal{Z}(G_{0}^{2}, \mathcal{N})$$

$$G_{2} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{2} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{2} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{3} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{4} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{5} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{6} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{7} = \mathcal{Z}(G_{1}^{2}, \mathcal{N})$$

$$G_{8} = \mathcal{Z}(G_{$$

vertices

Space analysis

Claims.

- 1. The space required to simulate a step on G_j^2 is O(1) lus the space required to simpulate a step on G_j .
- 2. The space required to simulate a step on $\mathcal{Z}(G_j^2 \mid H)$ is O(1) plus the space required to simulate a step on G_j^2 .

If above hold, then space required to simulate step on G_k is $O(k + \log(n))$, as desired.

GK=丑(GK,H)

inpat: vertex v, (i,i)

Dquery G; Sorith neighbor of V2, =) V2

(2) query 6j for jth heighbor of 12,=>13

AGKINIA (KI, KZ)

1, Hariz //query H, O(1) V, 12 > V2 //O(1) + query (GK)

13 12 14 / Try all i3 13 14 / O(1) + query (62)

2 Analysis of the zig-zag product

Lemma 2. Let

- ullet G = (V, E) regular undirected graph w/n vertices and degree d
- ullet H regular undirected graph w/ d vertices and degree d_0

Then $\mathcal{Z}(G \mid H)$ has:

- nd vertices,
- degree d_0^2
- spectral gap $\gamma_G \gamma_H^2$.

2.1

References

- [Rei08] Omer Reingold. "Undirected connectivity in log-space". In: *J. ACM* 55.4 (2008), 17:1–17:24. Preliminary version in STOC, 2005.
- [Vad12] Salil P. Vadhan. "Pseudorandomness". In: Found. Trends Theor. Comput. Sci. 7.1-3 (2012), pp. 1–336.

regular degree Zig-Zag Product decrease degree Goal: • G = (V, E) regular graph w/ n vertices and degre G \bullet $H = (V_0, E_0)$ regular graph w/ d vertices and degree $d_0 = \bigcirc \bigcirc$ • identify $V_0 = [d]$ • vertices in $H \leftrightarrow \text{steps in } G$ walks in GZig-Zag product $\mathcal{Z}(G | H)$ vertex set $V \times [d]$ Vertices (k_1, k_2) th neighbor of $(v_1, i_1) \in V \times [d]$: Edges: $\begin{pmatrix} v_1 \\ i_1 \end{pmatrix} \xrightarrow{1} \begin{pmatrix} v_1 \\ i_2 \end{pmatrix} \xrightarrow{2} \begin{pmatrix} v_2 \\ i_2 \end{pmatrix} \xrightarrow{3} \begin{pmatrix} v_2 \\ i_3 \end{pmatrix} \xrightarrow{4} \begin{pmatrix} v_2 \\ i_4 \end{pmatrix}$ I step in H from i_1 to its k_1 th neighbor, i_2 . G2. moves v_1 to its i_2 th neighborm, v_2 . 3. move from i_2 to i_3 if v_1 is the i_3 th neighbor of v_2 . 4. moves i_3 to its k_2 th neighbor in H. (google images) Notes: • steps 2, 3 have 0 degrees of freedom

- v_1 adjacent to v_2 in G
- i_1 not (necessarily) adjaceny to i_2 in H?!
- s,t connected in G only if ... $\binom{s}{i}$, $\binom{s}{i}$ connected
- (s,i),(t,j) connected in G only if ...

Lemma 2. Let

- ullet G=(V,E) regular undirected graph w/n vertices and degree d
- ullet H regular undirected graph w/ d vertices and degree d_0

Then $\mathcal{Z}(G \mid H)$ has:

- nd vertices,
- degree d_0^2
- spectral gap $\gamma_G \gamma_H^2$.

RG = random walk

RH = roundom walk

IGZ "identity" mulk

Random step in Z(G1H)

(IGORH)Z (IGORH)

 $S: \mathbb{R}^d \to \mathbb{R}^d$

(d=VA)

Sv = #

ve Dd

(rondom walk on a diquet Iself-loop)
RHAS

(I685)Z(I685)

$$\begin{pmatrix} V_1 \\ V_1 \end{pmatrix} \xrightarrow{R_6 \otimes 5} \begin{pmatrix} V_2 \\ V_4 \end{pmatrix} =$$

one random step in RG + one random in S

(RG & S)

(ICORH)Z(ICORH)

Z(IGSS)Z(IGSS)

= (RGOS) = RG

1 Tensor product & graphs

 $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ $d_1 - regular$ $R_1 \leftarrow random w$ $R_2 - random w$

6,862

{(v, v2): v, eV, , v2EV25 vertices: "EIXE2" edges: = { (u,1u2) -> (v, v2) is $\chi(i)\chi_2(j)$ $(\chi_1 \otimes \chi_2)_{ij}$ PED', GED'2 Sipigi= (pog) 6 D1, XV2 (Sip;) (Sip;)=1 (p89):= Pig; 20

p= station. dist. on
$$G_1$$

q= station. dist on G_2

(p@q) station. For $G_1 \otimes G_2$

Pross

 $(R_1 \otimes R_2) = (R_1 \otimes I)(I \otimes R_2)$
 $(I \otimes R_3)(G \otimes g) = (G \otimes R_3 g) = (G \otimes R_3 g)$

$$(R_1 \otimes R_2) = (R_1 \otimes L_1)(1 \otimes R_2)$$

$$(I \otimes R_2) (\rho \otimes q) = (\rho \otimes R_2 q) = (\rho \otimes q)$$

$$(R_1 \otimes L_2) (\rho \otimes q) = (R_1 \rho \otimes q) = (\rho \otimes q)$$

$$(R_1 \otimes R_2)(\chi \otimes \gamma) = (R_1 \chi \otimes R_2 \gamma)$$

Theorem

OGBC2 is (d,dz) regular, undirected

eigenvectors/
eigenvalues
$$(\chi_{1}, \lambda_{1}) \rightarrow R_{1} \Longrightarrow (\chi_{1} \otimes \chi_{2}, \lambda_{1} \lambda_{2}) \rightarrow R_{1} \otimes R_{2}$$

$$(\chi_{2}, \lambda_{2}) \rightarrow R_{2}$$

$$(R_1 \otimes R_2)(x_1 \otimes x_2) = R_1 x_1 \otimes R_2 x_2 = \lambda_1 x_1 \otimes \lambda_2 x_2$$
$$= \lambda_1 \lambda_2 (x_1 \otimes x_2)$$

let u, ..., un, be orthon eigenv. of R,

V1,..., Vnz be orth. eigenv. of Rz

then: { u; & v; 3. orth. eigenv. of R, & R, & Rz

 $\langle (u_1 \otimes v_2), (u_4 \otimes v_5) \rangle = \langle u_1, u_4 \rangle \cdot \langle v_2, v_5 \rangle$

(IORH) Z (IORH)

4=1 ERd

 $R_{H} = \frac{1}{4} 101 + \lambda_{2} u_{2} 0 u_{2} + + \lambda_{3} u_{4} 0 u_{5} u_{5}$

 $R_{H} = S + \lambda_{2} u_{2} \otimes u_{2} + \cdots + \lambda_{n} u_{n} \otimes u_{n}$ $R_{H}' = (+ v_{H}) S + \lambda_{2} \dots \lambda_{2}, \dots, \lambda_{n} \in [1 - v_{H}, v_{H} - 1]$

$$R'_{H} = R - V_{H} S$$
all eigenvalues of $R'_{H} \in [I + V_{H}, V_{H} - I]$

$$(I \otimes R_{H}) Z (I \otimes R_{H}) \qquad R_{H} = V_{S} + R'_{H}$$

$$(I \otimes (V_{H} S + R'_{H})) Z (I \otimes (V_{H} S + R'_{H})) \qquad (I \otimes (A + B))$$

$$= V_{H}^{2} (I \otimes S) Z (I \otimes S) = R_{c} \otimes S$$

$$+ V_{H} (I \otimes S) Z (I \otimes R'_{H}) + (I \otimes R'_{H}) Z (I \otimes S))$$

$$+ (I \otimes R'_{H}) Z (I \otimes R'_{H})$$

$$(X, (I \otimes S) Z (I \otimes R'_{H}) \chi) | \chi \in \mathbb{R}^{V \times d}$$

$$= ||\chi|| \left[||(I \otimes S) Z (I \otimes R'_{H}) \chi|| \right] \qquad (X, I) = 0$$

$$= \langle y, (I \otimes S)^{2} y \rangle$$

$$= \langle y, (I \otimes S)^{2} y \rangle$$

$$\leq \|y\|^2 \cdot \lambda_{\text{max}}(I\otimes S)^2$$

11(IBS)Z(IBRH)x11 < / / (IOS) (A) (Z) 12/max (IOR) = 7/4 (IBS)2(IBS) / 1-1/4 + 1/4 ((IOS)Z(IORH)+ (IORH)Z(IOS)) + (IORH)Z(IORH) (1, 22..., yo (1,0,00...) R605 (I&S)Z(I&S) =

(1, 22, ..., 22, 0, ..., 6) [+ 86, 86-1]